Chiara Alfarano¹, Marc Guerard¹, Claire Abadie², Catherine Deloche², Jean-Marc Combette², Philippe Lluel¹

¹ Urosphere, Toulouse, France; ² Solid Drug Development, Geneva, Switzerland

Introduction

- + The pathophysiology of ischemic acute kidney injury is very complex and still not completely understood.
- + Experimental models of renal ischemia reperfusion (IR) injury in rodents are widely used to study the effect of therapeutic and preventing strategies.
- + Previous studies demonstrated that the blockade of c-Jun N-terminal kinase (JNK) signaling pathway can prevent acute tubular necrosis and renal dysfunction induced by IR injury¹.

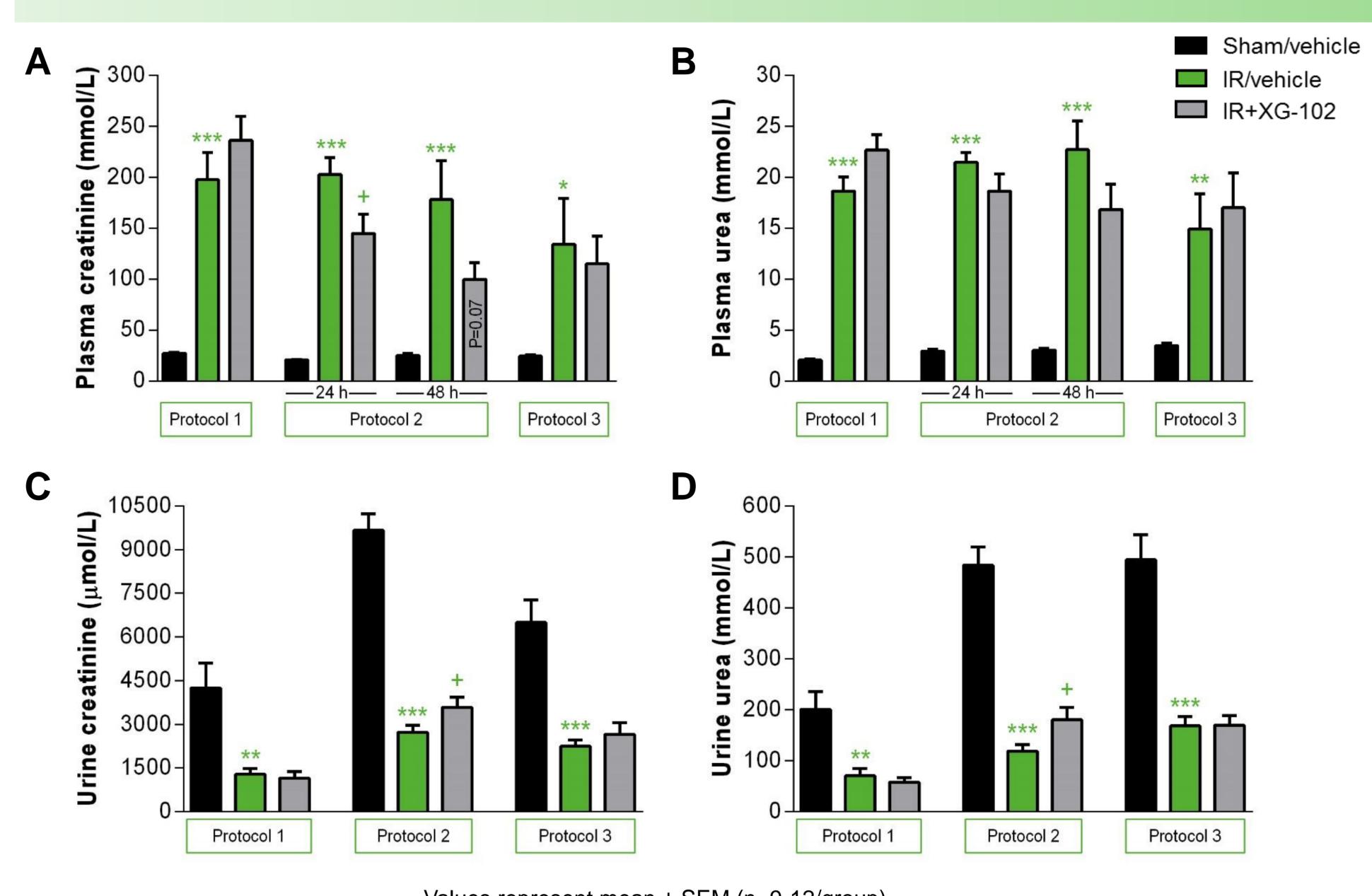
Objective

The aim of our study was to evaluate the effect of JNK inhibitor (XG-102) on kidney function and histological lesions induced by bilateral kidney IR injury in rats.

Methods

- + Animals: rat, Sprague-Dawley, males (9-12/group).
- + **Surgery:** bilateral kidney IR injury by clamping of renal pedicles.
- + Study design:

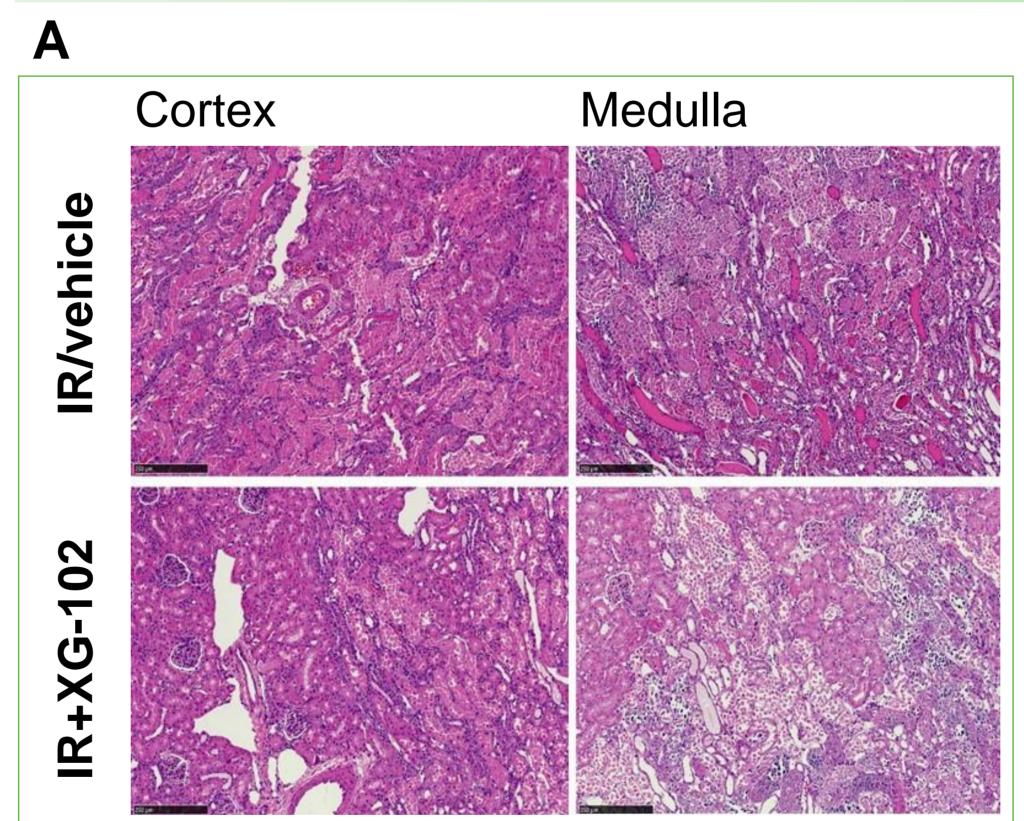
Protocol #	Ischemia	Reperfusion	XG-102 administration		
			Dose (mg/kg)	Timing	
Protocol 1	40 min	24 h	2	20 min after IR	
Protocol 2	40 min	48 h	8	1 h before IR	
Protocol 3	40 min	72 h	8	24 h after IR	


+ Experimental groups:

Group	IR	Treatment (<i>i.v</i>)	For each protocol: + Sham animals underwent the same surgery w/o clamping of
Sham	no	vehicle	kidney pedicles.
IR	yes	vehicle	+ XG-102 or its vehicle (NaCl 0.9%)
IR+XG-102	yes	XG-102	were administered into the tail vein. + 9-12 animals per group

- + Kidney function biomarkers: creatinine and urea using ABX Pentra 400 clinical chemical analyser.
- + **Histology:** tubular damages evaluation by score system on hematoxyline/eosin (HE) staining of kidney sections.

Results


Effect of XG-102 on kidney function biomarkers

Values represent mean ± SEM (n=9-12/group)
*P<0.05; **P<0.01;***P<0.001 *v*s Sham/vehicle. +P<0.05 *v*s IR/vehicle (unpaired *t*-test w or w/o Welch's correction)

- + In male SD rats, bilateral kidney IR induced:
 - + a significant increase of plasmatic creatinine (A) and urea (B);
 - + a significant decrease of urinary creatinine (C) and urea (D).
- + XG-102 administered 1 hour before ischemia (**Protocol 2**) significantly reduced plasma creatinine and increased creatinine and urea excretion.
- + No significant effect was observed in protocol 1 and 3.

Effect of XG-102 on tubular damages

Protocol #	Surgery and Treatment		Tubular changes			T. (. 1 T . 1 . 1
			Tubular degeneration/ necrosis	Tubular cast	Basophilic tubules	Total Tubular score
Protocol 1	Sham/vehicle	mean ±SEM	0.00 0.00	0.00 0.00	0.25 0.13	0.25 0.13
	IR/vehicle	mean ±SEM	3.45 *** 0.16	3.00 *** 0.00	1.36 *** 0.20	7.82 *** 0.30
	IR/XG-102	mean ±SEM	2.67 + 0.19	2.50 + 0.15	1.33 0.19	6.50 + 0.23
Protocol 2	Sham/vehicle	mean SEM	0.00 0.00	0.00 0.00	0.18 0.12	0.18 0.12
	IR/vehicle	mean ±SEM	3,00 *** 0.17	3,25 *** 0.13	1,67 *** 0.14	7,92 *** 0.19
	IR/XG-102	mean ±SEM	2,25 ++ 0.13	2,67 + 0.14	2.00 0.12	6,92 + 0.26
Protocol 3	Sham/vehicle	mean ±SEM	0.00 0.00	0.00 0.00	0.10 0.10	0.10 0.10
	IR/vehicle	mean ±SEM	3,33 *** 0.17	2,44 *** 0.24	2,00 *** 0.17	7,78 *** 0.28
	IR/XG-102	mean ±SEM	2,27 ++ 0.20	2.36 0.03	2.27 0.20	6.91 0.37

Values represent mean ± SEM(n=9-12/group)

***P<0.001 vs Sham/vehicle

+P<0.05; ++ P<0.01 vs IR/vehicle (Mann Whitney test)

- A Representative images of HE stained kidney sections
- **B** Quantification of tubular damages by score system
- + In male SD rats, bilateral kidney IR induced a significant increase of tubular degeneration and necrosis, tubular cast and basophilic tubules
- + XG-102 reduced the severity of tubular damages. In XG-102 treated rats, the number of tubules affected was lower and the lesions were mostly limited to the cortico-medullary junction and not extended to the superficial cortex compared to vehicle treated animals.

Conclusions

Bilateral renal IR in rats induced impaired kidney function and severe tubular damages. XG-102 administered i.v. before or after IR reversed kidney tubular lesions induced by IR injury. However, XG-102 seems to be more efficient when administered preventively (1 hour before IR; Protocol 2) showing a beneficial effect on both kidney function and tubular damages. These results suggest that JNK inhibition before IR injury can represent a pharmacological strategy to prevent acute kidney injury occurring in humans.